Energy Efficient Hadamard Neural Networks

05/14/2018
by   T. Ceren Deveci, et al.
0

Deep learning has made significant improvements at many image processing tasks in recent years, such as image classification, object recognition and object detection. Convolutional neural networks (CNN), which is a popular deep learning architecture designed to process data in multiple array form, show great success to almost all detection & recognition problems and computer vision tasks. However, the number of parameters in a CNN is too high such that the computers require more energy and larger memory size. In order to solve this problem, we propose a novel energy efficient model Binary Weight and Hadamard-transformed Image Network (BWHIN), which is a combination of Binary Weight Network (BWN) and Hadamard-transformed Image Network (HIN). It is observed that energy efficiency is achieved with a slight sacrifice at classification accuracy. Among all energy efficient networks, our novel ensemble model outperforms other energy efficient models.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset