Energy regularized models for logarithmic SPDEs and their numerical approximations

03/09/2023
by   Jianbo Cui, et al.
0

Understanding the properties of the stochastic phase field models is crucial to model processes in several practical applications, such as soft matters and phase separation in random environments. To describe such random evolution, this work proposes and studies two mathematical models and their numerical approximations for parabolic stochastic partial differential equation (SPDE) with a logarithmic Flory–Huggins energy potential. These multiscale models are built based on a regularized energy technique and thus avoid possible singularities of coefficients. According to the large deviation principle, we show that the limit of the proposed models with small noise naturally recovers the classical dynamics in deterministic case. Moreover, when the driving noise is multiplicative, the Stampacchia maximum principle holds which indicates the robustness of the proposed model. One of the main advantages of the proposed models is that they can admit the energy evolution law and asymptotically preserve the Stampacchia maximum bound of the original problem. To numerically capture these asymptotic behaviors, we investigate the semi-implicit discretizations for regularized logrithmic SPDEs. Several numerical results are presented to verify our theoretical findings.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset