Enhanced multi-fidelity modelling for digital twin and uncertainty quantification

by   AS Desai, et al.

The increasing significance of digital twin technology across engineering and industrial domains, such as aerospace, infrastructure, and automotive, is undeniable. However, the lack of detailed application-specific information poses challenges to its seamless implementation in practical systems. Data-driven models play a crucial role in digital twins, enabling real-time updates and predictions by leveraging data and computational models. Nonetheless, the fidelity of available data and the scarcity of accurate sensor data often hinder the efficient learning of surrogate models, which serve as the connection between physical systems and digital twin models. To address this challenge, we propose a novel framework that begins by developing a robust multi-fidelity surrogate model, subsequently applied for tracking digital twin systems. Our framework integrates polynomial correlated function expansion (PCFE) with the Gaussian process (GP) to create an effective surrogate model called H-PCFE. Going a step further, we introduce deep-HPCFE, a cascading arrangement of models with different fidelities, utilizing nonlinear auto-regression schemes. These auto-regressive schemes effectively address the issue of erroneous predictions from low-fidelity models by incorporating space-dependent cross-correlations among the models. To validate the efficacy of the multi-fidelity framework, we first assess its performance in uncertainty quantification using benchmark numerical examples. Subsequently, we demonstrate its applicability in the context of digital twin systems.


page 1

page 2

page 3

page 4


RMFGP: Rotated Multi-fidelity Gaussian process with Dimension Reduction for High-dimensional Uncertainty Quantification

Multi-fidelity modelling arises in many situations in computational scie...

Multi-fidelity methods for uncertainty propagation in kinetic equations

The construction of efficient methods for uncertainty quantification in ...

The role of surrogate models in the development of digital twins of dynamic systems

Digital twin technology has significant promise, relevance and potential...

Prior-informed Uncertainty Modelling with Bayesian Polynomial Approximations

Orthogonal polynomial approximations form the foundation to a set of wel...

Machine learning based digital twin for dynamical systems with multiple time-scales

Digital twin technology has a huge potential for widespread applications...

Multi-Fidelity Surrogate Modeling for Time-Series Outputs

This paper considers the surrogate modeling of a complex numerical code ...

Please sign up or login with your details

Forgot password? Click here to reset