Enhancement of Direct LEO Satellite-to-Smartphone Communications by Distributed Beamforming

08/09/2023
by   Zhuoao Xu, et al.
0

The low earth orbit (LEO) satellite network is undergoing rapid development with the maturing of satellite communications and rocket launch technologies, and the demand for a global coverage network. However, current satellite communication networks are constrained by limited transmitting signal power, resulting in the use of large-size and energy-consuming ground terminals to provide additional gain. This paper proposes a novel technology called distributed beamforming to address such challenges and support direct communications from LEO satellites to smartphones. The proposed distributed beamforming technique is based on the superposition of electromagnetic (EM) waves and aims to enhance the received signal strength. Furthermore, we utilize EM wave superposition to increase the link budget and provide the coverage pattern formed by the distributed antenna array, which will be affected by the array structure and the transmitter parameters. In addition, the impact of Doppler frequency shift and time misalignment on the performance of distributed beamforming is investigated. Numerical results show that the enhancement of the received power depends on the angle formed by those radiated beams and can be up to the square of the number of beams; namely, a maximum enhancement of 6 dB could be obtained by using two satellites and a maximum of 12 dB increase through four satellites, which provide a clear guideline for the design of distributed beamforming for future satellite communications.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset