Entropic exercises around the Kneser-Poulsen conjecture
We develop an information-theoretic approach to study the Kneser–Poulsen conjecture in discrete geometry. This leads us to a broad question regarding whether Rényi entropies of independent sums decrease when one of the summands is contracted by a 1-Lipschitz map. We answer this question affirmatively in various cases.
READ FULL TEXT