ESMC: Entire Space Multi-Task Model for Post-Click Conversion Rate via Parameter Constraint

by   Zhenhao Jiang, et al.

Large-scale online recommender system spreads all over the Internet being in charge of two basic tasks: Click-Through Rate (CTR) and Post-Click Conversion Rate (CVR) estimations. However, traditional CVR estimators suffer from well-known Sample Selection Bias and Data Sparsity issues. Entire space models were proposed to address the two issues via tracing the decision-making path of "exposure_click_purchase". Further, some researchers observed that there are purchase-related behaviors between click and purchase, which can better draw the user's decision-making intention and improve the recommendation performance. Thus, the decision-making path has been extended to "exposure_click_in-shop action_purchase" and can be modeled with conditional probability approach. Nevertheless, we observe that the chain rule of conditional probability does not always hold. We report Probability Space Confusion (PSC) issue and give a derivation of difference between ground-truth and estimation mathematically. We propose a novel Entire Space Multi-Task Model for Post-Click Conversion Rate via Parameter Constraint (ESMC) and two alternatives: Entire Space Multi-Task Model with Siamese Network (ESMS) and Entire Space Multi-Task Model in Global Domain (ESMG) to address the PSC issue. Specifically, we handle "exposure_click_in-shop action" and "in-shop action_purchase" separately in the light of characteristics of in-shop action. The first path is still treated with conditional probability while the second one is treated with parameter constraint strategy. Experiments on both offline and online environments in a large-scale recommendation system illustrate the superiority of our proposed methods over state-of-the-art models. The real-world datasets will be released.


page 1

page 6

page 7


ESCM^2: Entire Space Counterfactual Multi-Task Model for Post-Click Conversion Rate Estimation

Accurate estimation of post-click conversion rate is critical for buildi...

Entire Space Counterfactual Learning: Tuning, Analytical Properties and Industrial Applications

As a basic research problem for building effective recommender systems, ...

DCMT: A Direct Entire-Space Causal Multi-Task Framework for Post-Click Conversion Estimation

In recommendation scenarios, there are two long-standing challenges, i.e...

Entire Space Multi-Task Model: An Effective Approach for Estimating Post-Click Conversion Rate

Estimating post-click conversion rate (CVR) accurately is crucial for ra...

An Analysis Of Entire Space Multi-Task Models For Post-Click Conversion Prediction

Industrial recommender systems are frequently tasked with approximating ...

Conversion Rate Prediction via Post-Click Behaviour Modeling

Effective and efficient recommendation is crucial for modern e-commerce ...

Hierarchically Modeling Micro and Macro Behaviors via Multi-Task Learning for Conversion Rate Prediction

Conversion Rate (CVR) prediction in modern industrial e-commerce platfor...

Please sign up or login with your details

Forgot password? Click here to reset