Estimation and Sensitivity Analysis for Causal Decomposition in Heath Disparity Research

08/28/2020
by   Soojin Park, et al.
0

In the field of disparities research, there has been growing interest in developing a counterfactual-based decomposition analysis to identify underlying mediating mechanisms that help reduce disparities in populations. Despite rapid development in the area, most prior studies have been limited to regression-based methods, undermining the possibility of addressing complex models with multiple mediators and/or heterogeneous effects. We propose an estimation method that effectively addresses complex models. Moreover, we develop a novel sensitivity analysis for possible violations of identification assumptions. The proposed method and sensitivity analysis are demonstrated with data from the Midlife Development in the US study to investigate the degree to which disparities in cardiovascular health at the intersection of race and gender would be reduced if the distributions of education and perceived discrimination were the same across intersectional groups.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset