Estimation of local treatment under the binary instrumental variable model

07/28/2020
by   Linbo Wang, et al.
0

Instrumental variables are widely used to deal with unmeasured confounding in observational studies and imperfect randomized controlled trials. In these studies, researchers often target the so-called local average treatment effect as it is identifiable under mild conditions. In this paper, we consider estimation of the local average treatment effect under the binary instrumental variable model. We discuss the challenges for causal estimation with a binary outcome, and show that surprisingly, it can be more difficult than the case with a continuous outcome. We propose novel modeling and estimating procedures that improve upon existing proposals in terms of model congeniality, interpretability, robustness or efficiency. Our approach is illustrated via simulation studies and a real data analysis.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset