Estimation of parameters of the logistic exponential distribution under progressive type-I hybrid censored sample

02/03/2021
by   Subhankar Dutta, et al.
0

The paper addresses the problem of estimation of the model parameters of the logistic exponential distribution based on progressive type-I hybrid censored sample. The maximum likelihood estimates are obtained and computed numerically using Newton-Raphson method. Further, the Bayes estimates are derived under squared error, LINEX and generalized entropy loss functions. Two types (independent and bivariate) of prior distributions are considered for the purpose of Bayesian estimation. It is seen that the Bayes estimates are not of explicit forms.Thus, Lindley's approximation technique is employed to get approximate Bayes estimates. Interval estimates of the parameters based on normal approximate of the maximum likelihood estimates and normal approximation of the log-transformed maximum likelihood estimates are constructed. The highest posterior density credible intervals are obtained by using the importance sampling method. Furthermore, numerical computations are reported to review some of the results obtained in the paper. A real life dataset is considered for the purpose of illustrations.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset