EV-VGCNN: A Voxel Graph CNN for Event-based Object Classification

06/01/2021
by   Yongjian Deng, et al.
0

Event cameras report sparse intensity changes and hold noticeable advantages of low power consumption, high dynamic range, and high response speed for visual perception and understanding on portable devices. Event-based learning methods have recently achieved massive success on object recognition by integrating events into dense frame-based representations to apply traditional 2D learning algorithms. However, these approaches introduce much redundant information during the sparse-to-dense conversion and necessitate models with heavy-weight and large capacities, limiting the potential of event cameras on real-life applications. To address the core problem of balancing accuracy and model complexity for event-based classification models, we (1) construct graph representations for event data to utilize their sparsity nature better and design a lightweight end-to-end graph neural network (EV-VGCNN) for classification; (2) use voxel-wise vertices rather than traditional point-wise methods to incorporate the information from more points; (3) introduce a multi-scale feature relational layer (MFRL) to extract semantic and motion cues from each vertex adaptively concerning its distances to neighbors. Comprehensive experiments show that our approach advances state-of-the-art classification accuracy while achieving nearly 20 times parameter reduction (merely 0.84M parameters).

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset