Evaluating Novel Mask-RCNN Architectures for Ear Mask Segmentation

11/05/2022
by   Saurav K. Aryal, et al.
0

The human ear is generally universal, collectible, distinct, and permanent. Ear-based biometric recognition is a niche and recent approach that is being explored. For any ear-based biometric algorithm to perform well, ear detection and segmentation need to be accurately performed. While significant work has been done in existing literature for bounding boxes, a lack of approaches output a segmentation mask for ears. This paper trains and compares three newer models to the state-of-the-art MaskRCNN (ResNet 101 +FPN) model across four different datasets. The Average Precision (AP) scores reported show that the newer models outperform the state-of-the-art but no one model performs the best over multiple datasets.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro