Event Ticket Price Prediction with Deep Neural Network on Spatial-Temporal Sparse Data
Event ticket price prediction is important to marketing strategy for any sports team or musical ensemble. An accurate prediction model can help the marketing team to make promotion plan more effectively and efficiently. However, given all the historical transaction records, it is challenging to predict the sale price of the remaining seats at any future timestamp, not only because that the sale price is relevant to a lot of features (seat locations, date-to-event of the transaction, event date, team performance, etc.), but also because of the temporal and spatial sparsity in the dataset. For a game/concert, the ticket selling price of one seat is only observable once at the time of sale. Furthermore, some seats may not even be purchased (therefore no record available). In fact, data sparsity is commonly encountered in many prediction problems. Here, we propose a bi-level optimizing deep neural network to address the curse of spatio-temporal sparsity. Specifically, we introduce coarsening and refining layers, and design a bi-level loss function to integrate different level of loss for better prediction accuracy. Our model can discover the interrelations among ticket sale price, seat locations, selling time, event information, etc. Experiments show that our proposed model outperforms other benchmark methods in real-world ticket selling price prediction.
READ FULL TEXT