Every Bit Counts in Consensus

06/01/2023
by   Pierre Civit, et al.
0

Consensus enables n processes to agree on a common valid L-bit value, despite t < n/3 processes being faulty and acting arbitrarily. A long line of work has been dedicated to improving the worst-case communication complexity of consensus in partial synchrony. This has recently culminated in the worst-case word complexity of O(n^2). However, the worst-case bit complexity of the best solution is still O(n^2 L + n^2 kappa) (where kappa is the security parameter), far from the Ω(n L + n^2) lower bound. The gap is significant given the practical use of consensus primitives, where values typically consist of batches of large size (L > n). This paper shows how to narrow the aforementioned gap while achieving optimal linear latency. Namely, we present a new algorithm, DARE (Disperse, Agree, REtrieve), that improves upon the O(n^2 L) term via a novel dispersal primitive. DARE achieves O(n^1.5 L + n^2.5 kappa) bit complexity, an effective sqrtn-factor improvement over the state-of-the-art (when L > n kappa). Moreover, we show that employing heavier cryptographic primitives, namely STARK proofs, allows us to devise DARE-Stark, a version of DARE which achieves the near-optimal bit complexity of O(n L + n^2 poly(kappa)). Both DARE and DARE-Stark achieve optimal O(n) latency.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro