Exhaustive goodness-of-fit via smoothed inference and graphics

05/26/2020
by   Sara Algeri, et al.
0

Classical tests of goodness-of-fit aim to validate the conformity of a postulated model to the data under study. Given their inferential nature, they can be considered a crucial step in confirmatory data analysis. In their standard formulation, however, they do not allow exploring how the hypothesized model deviates from the truth nor do they provide any insight into how the rejected model could be improved to better fit the data. The main goal of this work is to establish a comprehensive framework for goodness-of-fit which naturally integrates modeling, estimation, inference, and graphics. Modeling and estimation focus on a novel formulation of smooth tests that easily extends to arbitrary distributions, either continuous or discrete. Inference and adequate post-selection adjustments are performed via a specially designed smoothed bootstrap and the results are summarized via an exhaustive graphical tool called CD-plot.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset