Exploiting Cross-Dialectal Gold Syntax for Low-Resource Historical Languages: Towards a Generic Parser for Pre-Modern Slavic
This paper explores the possibility of improving the performance of specialized parsers for pre-modern Slavic by training them on data from different related varieties. Because of their linguistic heterogeneity, pre-modern Slavic varieties are treated as low-resource historical languages, whereby cross-dialectal treebank data may be exploited to overcome data scarcity and attempt the training of a variety-agnostic parser. Previous experiments on early Slavic dependency parsing are discussed, particularly with regard to their ability to tackle different orthographic, regional and stylistic features. A generic pre-modern Slavic parser and two specialized parsers – one for East Slavic and one for South Slavic – are trained using jPTDP (Nguyen Verspoor 2018), a neural network model for joint part-of-speech (POS) tagging and dependency parsing which had shown promising results on a number of Universal Dependency (UD) treebanks, including Old Church Slavonic (OCS). With these experiments, a new state of the art is obtained for both OCS (83.79% unlabelled attachment score (UAS) and 78.43% labelled attachement score (LAS)) and Old East Slavic (OES) (85.7% UAS and 80.16% LAS).
READ FULL TEXT