Exposing GAN-generated Faces Using Inconsistent Corneal Specular Highlights
Sophisticated generative adversary network (GAN) models are now able to synthesize highly realistic human faces that are difficult to discern from real ones visually. GAN synthesized faces have become a new form of online disinformation. In this work, we show that GAN synthesized faces can be exposed with the inconsistent corneal specular highlights between two eyes. We show that such artifacts exist widely and further describe a method to extract and compare corneal specular highlights from two eyes. Qualitative and quantitative evaluations of our method suggest its simplicity and effectiveness in distinguishing GAN synthesized faces.
READ FULL TEXT