F-measure Maximizing Logistic Regression

05/07/2019
by   Masaaki Okabe, et al.
0

Logistic regression is a widely used method in several fields. When applying logistic regression to imbalanced data, for which majority classes dominate over minority classes, all class labels are estimated as `majority class.' In this article, we use an F-measure optimization method to improve the performance of logistic regression applied to imbalanced data. While many F-measure optimization methods adopt a ratio of the estimators to approximate the F-measure, the ratio of the estimators tends to have more bias than when the ratio is directly approximated. Therefore, we employ an approximate F-measure for estimating the relative density ratio. In addition, we define a relative F-measure and approximate the relative F-measure. We show an algorithm for a logistic regression weighted approximated relative to the F-measure. The experimental results using real world data demonstrated that our proposed method is an efficient algorithm to improve the performance of logistic regression applied to imbalanced data.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset