Facial Image Deformation Based on Landmark Detection
In this work, we use facial landmarks to make the deformation for facial images more authentic and verisimilar. The deformation includes the expansion for eyes and the shrinking for noses, mouths, and cheeks. An advanced 106-point facial landmark detector is utilized to provide control points for deformation. Bilinear interpolation is used in the expansion part and Moving Least Squares methods (MLS) including Affine Deformation, Similarity Deformation and Rigid Deformation are used in the shrinking part. We then compare the running time as well as the quality of deformed images using different MLS methods. The experimental results show that the Rigid Deformation which can keep other parts of the images unchanged performs best even if it takes the longest time.
READ FULL TEXT