Fairness Warnings and Fair-MAML: Learning Fairly with Minimal Data

08/24/2019
by   Dylan Slack, et al.
0

In this paper, we advocate for the study of fairness techniques in low data situations. We propose two algorithms Fairness Warnings and Fair-MAML. The first is a model-agnostic algorithm that provides interpretable boundary conditions for when a fairly trained model may not behave fairly on similar but slightly different tasks within a given domain. The second is a fair meta-learning approach to train models that can be trained through gradient descent with the objective of "learning how to learn fairly". This method encodes more general notions of fairness and accuracy into the model so that it can learn new tasks within a domain both quickly and fairly from only a few training points. We demonstrate experimentally the individual utility of each model using relevant baselines for comparison and provide the first experiment to our knowledge of K-shot fairness, i.e. training a fair model on a new task with only K data points. Then, we illustrate the usefulness of both algorithms as a combined method for training models from a few data points on new tasks while using Fairness Warnings as interpretable boundary conditions under which the newly trained model may not be fair.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset