FakeBuster: A DeepFakes Detection Tool for Video Conferencing Scenarios

01/09/2021
by   Vineet Mehta, et al.
0

This paper proposes a new DeepFake detector FakeBuster for detecting impostors during video conferencing and manipulated faces on social media. FakeBuster is a standalone deep learning based solution, which enables a user to detect if another person's video is manipulated or spoofed during a video conferencing based meeting. This tool is independent of video conferencing solutions and has been tested with Zoom and Skype applications. It uses a 3D convolutional neural network for predicting video segment-wise fakeness scores. The network is trained on a combination of datasets such as Deeperforensics, DFDC, VoxCeleb, and deepfake videos created using locally captured (for video conferencing scenarios) images. This leads to different environments and perturbations in the dataset, which improves the generalization of the deepfake network.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset