Fast Accurate Defect Detection in Wafer Fabrication
A generic fast method for object classification is proposed. In addition, a method for dimensional reduction is presented. The presented algorithms have been applied to real-world data from chip fabrication successfully to the task of predicting defect states of tens of thousands of chips of several products based on measurements or even just part of measurements. Unlike typical neural networks with a large number of weights to optimize over, the presented algorithm tries optimizing only over a very small number of variables in order to increase chances to find a global optimum. Our approach is interesting in that it is fast, led to good to very good performance with real-world wafer data, allows for short implementations and computes values which have a clear meaning easy to explain.
READ FULL TEXT