Federated Deep Reinforcement Learning for RIS-Assisted Indoor Multi-Robot Communication Systems

by   Ruyu Luo, et al.

Indoor multi-robot communications face two key challenges: one is the severe signal strength degradation caused by blockages (e.g., walls) and the other is the dynamic environment caused by robot mobility. To address these issues, we consider the reconfigurable intelligent surface (RIS) to overcome the signal blockage and assist the trajectory design among multiple robots. Meanwhile, the non-orthogonal multiple access (NOMA) is adopted to cope with the scarcity of spectrum and enhance the connectivity of robots. Considering the limited battery capacity of robots, we aim to maximize the energy efficiency by jointly optimizing the transmit power of the access point (AP), the phase shifts of the RIS, and the trajectory of robots. A novel federated deep reinforcement learning (F-DRL) approach is developed to solve this challenging problem with one dynamic long-term objective. Through each robot planning its path and downlink power, the AP only needs to determine the phase shifts of the RIS, which can significantly save the computation overhead due to the reduced training dimension. Simulation results reveal the following findings: I) the proposed F-DRL can reduce at least 86 centralized DRL; II) the designed algorithm can adapt to the increasing number of robots; III) compared to traditional OMA-based benchmarks, NOMA-enhanced schemes can achieve higher energy efficiency.


page 1

page 2

page 3

page 4

page 5

page 6


Deep Reinforcement Learning Powered IRS-Assisted Downlink NOMA

In this work, we examine an intelligent reflecting surface (IRS) assiste...

Decentralized Power Allocation for MIMO-NOMA Vehicular Edge Computing Based on Deep Reinforcement Learning

Vehicular edge computing (VEC) is envisioned as a promising approach to ...

Energy-Efficient Design for a NOMA assisted STAR-RIS Network with Deep Reinforcement Learning

Simultaneous transmitting and reflecting reconfigurable intelligent surf...

IRS-Enabled Backscattering in a Downlink Non-Orthogonal Multiple Access System

Intelligent reflecting surface (IRS)-enabled backscatter communications ...

Deep Reinforcement Learning for Power Control in Next-Generation WiFi Network Systems

This paper presents a deep reinforcement learning (DRL) solution for pow...

Active RIS-aided EH-NOMA Networks: A Deep Reinforcement Learning Approach

An active reconfigurable intelligent surface (RIS)-aided multi-user down...

RL-DWA Omnidirectional Motion Planning for Person Following in Domestic Assistance and Monitoring

Robot assistants are emerging as high-tech solutions to support people i...

Please sign up or login with your details

Forgot password? Click here to reset