Fine-Grained Complexity of Regular Path Queries

01/06/2021
by   Katrin Casel, et al.
0

A regular path query (RPQ) is a regular expression q that returns all node pairs (u, v) from a graph database that are connected by an arbitrary path labelled with a word from L(q). The obvious algorithmic approach to RPQ-evaluation (called PG-approach), i.e., constructing the product graph between an NFA for q and the graph database, is appealing due to its simplicity and also leads to efficient algorithms. However, it is unclear whether the PG-approach is optimal. We address this question by thoroughly investigating which upper complexity bounds can be achieved by the PG-approach, and we complement these with conditional lower bounds (in the sense of the fine-grained complexity framework). A special focus is put on enumeration and delay bounds, as well as the data complexity perspective. A main insight is that we can achieve optimal (or near optimal) algorithms with the PG-approach, but the delay for enumeration is rather high (linear in the database). We explore three successful approaches towards enumeration with sub-linear delay: super-linear preprocessing, approximations of the solution sets, and restricted classes of RPQs.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro