Finite-time analysis of single-timescale actor-critic

10/18/2022
by   Xuyang Chen, et al.
0

Despite the great empirical success of actor-critic methods, its finite-time convergence is still poorly understood in its most practical form. In particular, the analysis of single-timescale actor-critic presents significant challenges due to the highly inaccurate critic estimation and the complex error propagation dynamics over iterations. Existing works on analyzing single-timescale actor-critic only focus on the i.i.d. sampling or tabular setting for simplicity, which is rarely the case in practical applications. We consider the more practical online single-timescale actor-critic algorithm on continuous state space, where the critic is updated with a single Markovian sample per actor step. We prove that the online single-timescale actor-critic method is guaranteed to find an ϵ-approximate stationary point with 𝒪(ϵ^-2) sample complexity under standard assumptions, which can be further improved to 𝒪(ϵ^-2) under i.i.d. sampling. Our analysis develops a novel framework that evaluates and controls the error propagation between actor and critic in a systematic way. To our knowledge, this is the first finite-time analysis for online single-timescale actor-critic method. Overall, our results compare favorably to the existing literature on analyzing actor-critic in terms of considering the most practical settings and requiring weaker assumptions.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro