Fisher Information and Logarithmic Sobolev Inequality for Matrix Valued Functions

07/23/2018
by   Li Gao, et al.
0

We prove a version of Talagrand's concentration inequality for subordinated sub-Laplacian on a compact Riemannian manifold using tools from noncommutative geometry. As an application, motivated by quantum information theory, we show that on a finite dimensional matrix algebra the set of self-adjoint generators satisfying a tensor stable modified logarithmic Sobolev inequality is dense.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro