FoldingNet: Interpretable Unsupervised Learning on 3D Point Clouds
Recent deep networks that directly handle points in a point set, e.g., PointNet, have been state-of-the-art for supervised semantic learning tasks on point clouds such as classification and segmentation. In this work, a novel end-to-end deep auto-encoder is proposed to address unsupervised learning challenges on point clouds. On the encoder side, a graph-based enhancement is enforced to promote local structures on top of PointNet. Then, a novel folding-based approach is proposed in the decoder, which folds a 2D grid onto the underlying 3D object surface of a point cloud. The proposed decoder only uses about 7% parameters of a decoder with fully-connected neural networks, yet leads to a more discriminative representation that achieves higher linear SVM classification accuracy than the benchmark. In addition, the proposed decoder structure is shown, in theory, to be a generic architecture that is able to reconstruct an arbitrary point cloud from a 2D grid. Finally, this folding-based decoder is interpretable since the reconstruction could be viewed as a fine granular warping from the 2D grid to the point cloud surface.
READ FULL TEXT