Fourier Continuation Discontinuous Galerkin Methods for Linear Hyperbolic Problems

04/30/2021
by   Daniel Appelo, et al.
0

Fourier continuation is an approach used to create periodic extensions of non-periodic functions in order to obtain highly-accurate Fourier expansions. These methods have been used in PDE-solvers and have demonstrated high-order convergence and spectrally accurate dispersion relations in numerical experiments. Discontinuous Galerkin (DG) methods are increasingly used for solving PDEs and, as all Galerkin formulations, come with a strong framework for proving stability and convergence. Here we propose the use of Fourier continuation in forming a new basis for the DG framework.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro