Frank number and nowhere-zero flows on graphs

05/03/2023
by   Jan Goedgebeur, et al.
0

An edge e of a graph G is called deletable for some orientation o if the restriction of o to G-e is a strong orientation. In 2021, Hörsch and Szigeti proposed a new parameter for 3-edge-connected graphs, called the Frank number, which refines k-edge-connectivity. The Frank number is defined as the minimum number of orientations of G for which every edge of G is deletable in at least one of them. They showed that every 3-edge-connected graph has Frank number at most 7 and that in case these graphs are also 3-edge-colourable graphs the parameter is at most 3. Here we strengthen both results by showing that every 3-edge-connected graph has Frank number at most 4 and that every graph which is 3-edge-connected and 3-edge-colourable graph has Frank number 2. The latter also confirms a conjecture by Barát and Blázsik. Furthermore, we prove two sufficient conditions for cubic graphs to have Frank number 2 and use them in an algorithm to computationally show that the Petersen graph is the only cyclically 4-edge-connected cubic graph up to 36 vertices having Frank number greater than 2.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro