From Interpretable Filters to Predictions of Convolutional Neural Networks with Explainable Artificial Intelligence

by   Shagufta Henna, et al.

Convolutional neural networks (CNN) are known for their excellent feature extraction capabilities to enable the learning of models from data, yet are used as black boxes. An interpretation of the convolutional filtres and associated features can help to establish an understanding of CNN to distinguish various classes. In this work, we focus on the explainability of a CNN model called as cnnexplain that is used for Covid-19 and non-Covid-19 classification with a focus on the interpretability of features by the convolutional filters, and how these features contribute to classification. Specifically, we have used various explainable artificial intelligence (XAI) methods, such as visualizations, SmoothGrad, Grad-CAM, and LIME to provide interpretation of convolutional filtres, and relevant features, and their role in classification. We have analyzed the explanation of these methods for Covid-19 detection using dry cough spectrograms. Explanation results obtained from the LIME, SmoothGrad, and Grad-CAM highlight important features of different spectrograms and their relevance to classification.


page 1

page 3

page 8

page 9

page 10

page 11

page 12


Commentary on explainable artificial intelligence methods: SHAP and LIME

eXplainable artificial intelligence (XAI) methods have emerged to conver...

Ada-SISE: Adaptive Semantic Input Sampling for Efficient Explanation of Convolutional Neural Networks

Explainable AI (XAI) is an active research area to interpret a neural ne...

Deep Learning Reproducibility and Explainable AI (XAI)

The nondeterminism of Deep Learning (DL) training algorithms and its inf...

Multimodal Explainability via Latent Shift applied to COVID-19 stratification

We are witnessing a widespread adoption of artificial intelligence in he...

Deep Learning Generates Synthetic Cancer Histology for Explainability and Education

Artificial intelligence (AI) methods including deep neural networks can ...

Please sign up or login with your details

Forgot password? Click here to reset