Fruit classification using deep feature maps in the presence of deceptive similar classes

07/12/2020
by   Mohit Dandekar, et al.
0

Autonomous detection and classification of objects are admired area of research in many industrial applications. Though, humans can distinguish objects with high multi-granular similarities very easily; but for the machines, it is a very challenging task. The convolution neural networks (CNN) have illustrated efficient performance in multi-level representations of objects for classification. Conventionally, the existing deep learning models utilize the transformed features generated by the rearmost layer for training and testing. However, it is evident that this does not work well with multi-granular data, especially, in presence of deceptive similar classes (almost similar but different classes). The objective of the present research is to address the challenge of classification of deceptively similar multi-granular objects with an ensemble approach thfat utilizes activations from multiple layers of CNN (deep features). These multi-layer activations are further utilized to build multiple deep decision trees (known as Random forest) for classification of objects with similar appearance. The Fruits-360 dataset is utilized for evaluation of the proposed approach. With extensive trials it was observed that the proposed model outperformed over the conventional deep learning approaches.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset