Frustratingly Simple Entity Tracking with Effective Use of Multi-Task Learning Models
We present SET, a frustratingly Simple-yet-effective approach for Entity Tracking in procedural text. Compared with state-of-the-art entity tracking models that require domain-specific pre-training, SET simply fine-tunes off-the-shelf T5 with customized formats and gets comparable or even better performance on multiple datasets. Concretely, SET tackles the state and location prediction in entity tracking independently and formulates them as multi-choice and extractive QA problems, respectively. Through a series of careful analyses, we show that T5's supervised multi-task learning plays an important role in the success of SET. In addition, we reveal that SET has a strong capability of understanding implicit entity transformations, suggesting that multi-task transfer learning should be further explored in future entity tracking research.
READ FULL TEXT