Full-Jacobian Representation of Neural Networks

05/02/2019
by   Suraj Srinivas, et al.
70

Non-linear functions such as neural networks can be locally approximated by affine planes. Recent works make use of input-Jacobians, which describe the normal to these planes. In this paper, we introduce full-Jacobians, which includes this normal along with an additional intercept term called the bias-Jacobians, that together completely describe local planes. For ReLU neural networks, bias-Jacobians correspond to sums of gradients of outputs w.r.t. intermediate layer activations. We first use these full-Jacobians for distillation by aligning gradients of their intermediate representations. Next, we regularize bias-Jacobians alone to improve generalization. Finally, we show that full-Jacobian maps can be viewed as saliency maps. Experimental results show improved distillation on small data-sets, improved generalization for neural network training, and sharper saliency maps.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro