Fully-discrete finite element approximation for a family of degenerate parabolic problems

05/28/2020
by   Ramiro Acevedo, et al.
0

The aim of this work is to show an abstract framework to analyze the numerical approximation by using a finite element method in space and a Backward-Euler scheme in time of a family of degenerate parabolic problems. We deduce sufficient conditions to ensure that the fully-discrete problem has a unique solution and to prove quasi-optimal error estimates for the approximation. Finally, we show a degenerate parabolic problem which arises from electromagnetic applications and deduce its well-posedness and convergence by using the developed abstract theory, including numerical tests to illustrate the performance of the method and confirm the theoretical results. Keywords: parabolic degenerate equations, parabolic-elliptic equations, finite element method, backward Euler scheme, fully-discrete approximation, error estimates, eddy current model.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro