Function values are enough for L_2-approximation: Part II

11/03/2020
by   David Krieg, et al.
0

In the first part we have shown that, for L_2-approximation of functions from a separable Hilbert space in the worst-case setting, linear algorithms based on function values are almost as powerful as arbitrary linear algorithms if the approximation numbers are square-summable. That is, they achieve the same polynomial rate of convergence. In this sequel, we prove a similar result for separable Banach spaces and other classes of functions.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro