Functional approach to the error control in adaptive IgA schemes for elliptic boundary value problems

by   Svetlana Matculevich, et al.

This work presents a numerical study of functional type a posteriori error estimates for IgA approximation schemes in the context of elliptic boundary-value problems. Along with the detailed discussion of the most crucial properties of such estimates, we present the algorithm of a reliable solution approximation together with the scheme of efficient a posteriori error bound generation-based on solving an auxiliary problem with respect to an introduced vector-valued variable. In this approach, we take advantage of B-(THB-)spline's high smoothness for the auxiliary vector function reconstruction, which, at the same time, allows to use much coarser meshes and decrease the number of unknowns substantially. The most representative numerical results, obtained during a systematic testing of error estimates, are presented in the second part of the paper. The efficiency of the obtained error bounds is analysed from both the error estimation (indication) and the computational expenses points of view. Several examples illustrate that functional error estimates (alternatively referred to as the majorants and minorants of deviation from an exact solution) perform a much sharper error control than, for instance, residual-based error estimates. Simultaneously, assembling and solving the routines for an auxiliary variable reconstruction which generate the majorant of an error can be executed several times faster than the routines for a primal unknown.


page 16

page 17

page 21

page 25

page 26

page 28

page 30

page 31


Fully reliable error control for evolutionary problems

This work is focused on the application of functional-type a posteriori ...

Residual estimates for post-processors in elliptic problems

In this work we examine a posteriori error control for post-processed ap...

Residual-type a posteriori error analysis of HDG methods for Neumann boundary control problems

We study a posteriori error analysis of linear-quadratic boundary contro...

A posteriori error estimates for domain decomposition methods

Nowadays, a posteriori error control methods have formed a new important...

A posteriori error estimation for time-periodic eddy current problems

This work presents the multiharmonic analysis and derivation of function...

Error estimation and adaptivity for stochastic collocation finite elements Part I: single-level approximation

A general adaptive refinement strategy for solving linear elliptic parti...

A posteriori verification of the positivity of solutions to elliptic problems

The purpose of this paper is to develop a unified a posteriori method fo...

Please sign up or login with your details

Forgot password? Click here to reset