Functional-Coefficient Models for Multivariate Time Series in Designed Experiments: with Applications to Brain Signals

07/30/2022
by   Paolo Victor Redondo, et al.
0

To study the neurophysiological basis of attention deficit hyperactivity disorder (ADHD), clinicians use electroencephalography (EEG) which record neuronal electrical activity on the cortex. The most commonly-used metric in ADHD is the theta-to-beta spectral power ratio (TBR) that is based on a single-channel analysis. However, initial findings for this measure have not been replicated in other studies. Thus, instead of focusing on single-channel spectral power, a novel model for investigating interactions (dependence) between channels in the entire network is proposed. Although dependence measures such as coherence and partial directed coherence (PDC) are well explored in studying brain connectivity, these measures only capture linear dependence. Moreover, in designed clinical experiments, these dependence measures are observed to vary across subjects even within a homogeneous group. To address these limitations, we propose the mixed-effects functional-coefficient autoregressive (MX-FAR) model which captures between-subject variation by incorporating subject-specific random effects. The advantages of the MX-FAR model are the following: (1.) it captures potential non-linear dependence between channels; (2.) it is nonparametric and hence flexible and robust to model mis-specification; (3.) it can capture differences between groups when they exist; (4.) it accounts for variation across subjects; (5.) the framework easily incorporates well-known inference methods from mixed-effects models; (6.) it can be generalized to accommodate various covariates and factors. Finally, we apply the proposed MX-FAR model to analyze multichannel EEG signals and report novel findings on altered brain functional networks in ADHD.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset