Functional Nonlinear Learning

by   Haixu Wang, et al.

Using representations of functional data can be more convenient and beneficial in subsequent statistical models than direct observations. These representations, in a lower-dimensional space, extract and compress information from individual curves. The existing representation learning approaches in functional data analysis usually use linear mapping in parallel to those from multivariate analysis, e.g., functional principal component analysis (FPCA). However, functions, as infinite-dimensional objects, sometimes have nonlinear structures that cannot be uncovered by linear mapping. Linear methods will be more overwhelmed given multivariate functional data. For that matter, this paper proposes a functional nonlinear learning (FunNoL) method to sufficiently represent multivariate functional data in a lower-dimensional feature space. Furthermore, we merge a classification model for enriching the ability of representations in predicting curve labels. Hence, representations from FunNoL can be used for both curve reconstruction and classification. Additionally, we have endowed the proposed model with the ability to address the missing observation problem as well as to further denoise observations. The resulting representations are robust to observations that are locally disturbed by uncontrollable random noises. We apply the proposed FunNoL method to several real data sets and show that FunNoL can achieve better classifications than FPCA, especially in the multivariate functional data setting. Simulation studies have shown that FunNoL provides satisfactory curve classification and reconstruction regardless of data sparsity.


page 1

page 2

page 3

page 4


Nonlinear Functional Principal Component Analysis Using Neural Networks

Functional principal component analysis (FPCA) is an important technique...

Continuous-time multivariate analysis

The starting point for much of multivariate analysis (MVA) is an n× p da...

Sparse Functional Principal Component Analysis in High Dimensions

Functional principal component analysis (FPCA) is a fundamental tool and...

Robust Bayesian Functional Principal Component Analysis

We develop a robust Bayesian functional principal component analysis (FP...

A Statistical Approach to Set Classification by Feature Selection with Applications to Classification of Histopathology Images

Set classification problems arise when classification tasks are based on...

Neural Networks as Functional Classifiers

In recent years, there has been considerable innovation in the world of ...

A universal model for the Lorenz curve with novel applications for datasets containing zeros and/or exhibiting extreme inequality

Given that the existing parametric functional forms for the Lorenz curve...

Please sign up or login with your details

Forgot password? Click here to reset