Fundamental Limits of Deep Learning-Based Binary Classifiers Trained with Hinge Loss

09/13/2023
by   Tilahun M. Getu, et al.
0

Although deep learning (DL) has led to several breakthroughs in many disciplines as diverse as chemistry, computer science, electrical engineering, mathematics, medicine, neuroscience, and physics, a comprehensive understanding of why and how DL is empirically successful remains fundamentally elusive. To attack this fundamental problem and unravel the mysteries behind DL's empirical successes, significant innovations toward a unified theory of DL have been made. These innovations encompass nearly fundamental advances in optimization, generalization, and approximation. Despite these advances, however, no work to date has offered a way to quantify the testing performance of a DL-based algorithm employed to solve a pattern classification problem. To overcome this fundamental challenge in part, this paper exposes the fundamental testing performance limits of DL-based binary classifiers trained with hinge loss. For binary classifiers that are based on deep rectified linear unit (ReLU) feedforward neural networks (FNNs) and ones that are based on deep FNNs with ReLU and Tanh activation, we derive their respective novel asymptotic testing performance limits. The derived testing performance limits are validated by extensive computer experiments.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset