GAN-based Projector for Faster Recovery in Compressed Sensing with Convergence Guarantees

02/26/2019
by   Ankit Raj, et al.
0

A Generative Adversarial Network (GAN) with generator G trained to model the prior of images has been shown to perform better than sparsity-based regularizers in ill-posed inverse problems. In this work, we propose a new method of deploying a GAN-based prior to solve linear inverse problems using projected gradient descent (PGD). Our method learns a network-based projector for use in the PGD algorithm, eliminating the need for expensive computation of the Jacobian of G. Experiments show that our approach provides a speed-up of 30-40× over earlier GAN-based recovery methods for similar accuracy in compressed sensing. Our main theoretical result is that if the measurement matrix is moderately conditioned for range(G) and the projector is δ-approximate, then the algorithm is guaranteed to reach O(δ) reconstruction error in O(log(1/δ)) steps in the low noise regime. Additionally, we propose a fast method to design such measurement matrices for a given G. Extensive experiments demonstrate the efficacy of this method by requiring 5-10× fewer measurements than random Gaussian measurement matrices for comparable recovery performance.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro