Gaussian-Dirichlet Posterior Dominance in Sequential Learning

02/14/2017
by   Ian Osband, et al.
0

We consider the problem of sequential learning from categorical observations bounded in [0,1]. We establish an ordering between the Dirichlet posterior over categorical outcomes and a Gaussian posterior under observations with N(0,1) noise. We establish that, conditioned upon identical data with at least two observations, the posterior mean of the categorical distribution will always second-order stochastically dominate the posterior mean of the Gaussian distribution. These results provide a useful tool for the analysis of sequential learning under categorical outcomes.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro