Global Optimization for IRS-Assisted Wireless Communications: from Physics and Electromagnetic Perspectives
Intelligent reflecting surfaces (IRSs) are envisioned to be a disruptive wireless communication technique that is capable of reconfiguring the wireless propagation environment. In this paper, we study a far-field IRS-assisted multiple-input single-output (MISO) communication system operating in free space. To maximize the received power of the receiver from the physics and electromagnetic nature point of view, an optimization, including beamforming of the transmitter, phase shifts of the IRS, orientation and position of the IRS is formulated and solved. After exploiting the property of line-of-sight (LoS), we derive closed-form solutions of beamforming and phase shifts. For the non-trivial IRS position optimization problem in arbitrary three-dimensional space, a dimensional-reducing theory is proved, which is useful to reduce the complexity of search method. The simulation results show that the proposed closed-form beamforming and phase shifts are near-optimal solutions. Besides, the IRS significantly enhances the performance of the communication system when it is deployed at the optimal position.
READ FULL TEXT