Goal-based sensitivity maps using time windows and ensemble perturbations

04/12/2018
by   C. E. Heaney, et al.
0

We present an approach for forming sensitivity maps (or sensitivites) using ensembles. The method is an alternative to using an adjoint, which can be very challenging to formulate and also computationally expensive to solve. The main novelties of the presented approach are: 1) the use of goals, weighting the perturbation to help resolve the most important sensitivities, 2) the use of time windows, which enable the perturbations to be optimised independently for each window and 3) re-orthogonalisation of the solution through time, which helps optimise each perturbation when calculating sensitivity maps. These novel methods greatly reduce the number of ensembles required to form the sensitivity maps as demonstrated in this paper. As the presented method relies solely on ensembles obtained from the forward model, it can therefore be applied directly to forward models of arbitrary complexity arising from, for example, multi-physics coupling, legacy codes or model chains. It can also be applied to compute sensitivities for optimisation of sensor placement, optimisation for design or control, goal-based mesh adaptivity, assessment of goals (e.g. hazard assessment and mitigation in the natural environment), determining the worth of current data and data assimilation. We analyse and demonstrate the efficiency of the approach by applying the method to advection problems and also a non-linear heterogeneous multi-phase porous media problem, showing, in all cases, that the number of ensembles required to obtain accurate sensitivity maps is relatively low, in the order of 10s.

READ FULL TEXT

page 10

page 24

page 25

page 27

page 28

research
02/03/2022

Global sensitivity analysis based on Gaussian-process metamodelling for complex biomechanical problems

Biomechanical models often need to describe very complex systems, organs...
research
10/27/2014

Sensitivity Analysis for Computationally Expensive Models using Optimization and Objective-oriented Surrogate Approximations

In this paper, we focus on developing efficient sensitivity analysis met...
research
03/27/2022

Novel ensemble collaboration method for dynamic scheduling problems

Dynamic scheduling problems are important optimisation problems with man...
research
02/15/2021

Developing parsimonious ensembles using predictor diversity within a reinforcement learning framework

Heterogeneous ensembles that can aggregate an unrestricted number and va...
research
03/14/2023

Window-Based Early-Exit Cascades for Uncertainty Estimation: When Deep Ensembles are More Efficient than Single Models

Deep Ensembles are a simple, reliable, and effective method of improving...
research
02/06/2019

Toward computing sensitivities of average quantities in turbulent flows

Chaotic dynamical systems such as turbulent flows are characterized by a...

Please sign up or login with your details

Forgot password? Click here to reset