GP-UNIT: Generative Prior for Versatile Unsupervised Image-to-Image Translation

06/07/2023
by   Shuai Yang, et al.
0

Recent advances in deep learning have witnessed many successful unsupervised image-to-image translation models that learn correspondences between two visual domains without paired data. However, it is still a great challenge to build robust mappings between various domains especially for those with drastic visual discrepancies. In this paper, we introduce a novel versatile framework, Generative Prior-guided UNsupervised Image-to-image Translation (GP-UNIT), that improves the quality, applicability and controllability of the existing translation models. The key idea of GP-UNIT is to distill the generative prior from pre-trained class-conditional GANs to build coarse-level cross-domain correspondences, and to apply the learned prior to adversarial translations to excavate fine-level correspondences. With the learned multi-level content correspondences, GP-UNIT is able to perform valid translations between both close domains and distant domains. For close domains, GP-UNIT can be conditioned on a parameter to determine the intensity of the content correspondences during translation, allowing users to balance between content and style consistency. For distant domains, semi-supervised learning is explored to guide GP-UNIT to discover accurate semantic correspondences that are hard to learn solely from the appearance. We validate the superiority of GP-UNIT over state-of-the-art translation models in robust, high-quality and diversified translations between various domains through extensive experiments.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro