Gradient-based Wang-Landau Algorithm: A Novel Sampler for Output Distribution of Neural Networks over the Input Space

02/19/2023
by   Weitang Liu, et al.
0

The output distribution of a neural network (NN) over the entire input space captures the complete input-output mapping relationship, offering insights toward a more comprehensive NN understanding. Exhaustive enumeration or traditional Monte Carlo methods for the entire input space can exhibit impractical sampling time, especially for high-dimensional inputs. To make such difficult sampling computationally feasible, in this paper, we propose a novel Gradient-based Wang-Landau (GWL) sampler. We first draw the connection between the output distribution of a NN and the density of states (DOS) of a physical system. Then, we renovate the classic sampler for the DOS problem, the Wang-Landau algorithm, by replacing its random proposals with gradient-based Monte Carlo proposals. This way, our GWL sampler investigates the under-explored subsets of the input space much more efficiently. Extensive experiments have verified the accuracy of the output distribution generated by GWL and also showcased several interesting findings - for example, in a binary image classification task, both CNN and ResNet mapped the majority of human unrecognizable images to very negative logit values.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset