Graph-based Time-Series Anomaly Detection: A Survey
With the recent advances in technology, a wide range of systems continues to collect a large amount of data over time and thus generating time series. Detecting anomalies in time series data is an important task in various applications such as e-commerce, cybersecurity, and health care monitoring. However, Time-series Anomaly Detection (TSAD) is very challenging as it requires considering both the temporal dependency and the structural dependency. Recent graph-based approaches have made impressive progress in tackling the challenges of this field. In this survey, we conduct a comprehensive and up-to-date review of Graph-based Time-series Anomaly Detection (G-TSAD). First, we explore the significant potential of graph-based methods in identifying different types of anomalies in time series data. Then, we provide a structured and comprehensive review of the state-of-the-art graph anomaly detection techniques in the context of time series. Finally, we discuss the technical challenges and potential future directions for possible improvements in this research field.
READ FULL TEXT