Guided Generative Protein Design using Regularized Transformers

01/24/2022
by   Egbert Castro, et al.
25

The development of powerful natural language models have increased the ability to learn meaningful representations of protein sequences. In addition, advances in high-throughput mutagenesis, directed evolution, and next-generation sequencing have allowed for the accumulation of large amounts of labeled fitness data. Leveraging these two trends, we introduce Regularized Latent Space Optimization (ReLSO), a deep transformer-based autoencoder which is trained to jointly generate sequences as well as predict fitness. Using ReLSO, we explicitly model the underlying sequence-function landscape of large labeled datasets and optimize within latent space using gradient-based methods. Through regularized prediction heads, ReLSO introduces a powerful protein sequence encoder and novel approach for efficient fitness landscape traversal.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset