h-detach: Modifying the LSTM Gradient Towards Better Optimization

10/06/2018
by   Devansh Arpit, et al.
0

Recurrent neural networks are known for their notorious exploding and vanishing gradient problem (EVGP). This problem becomes more evident in tasks where the information needed to correctly solve them exist over long time scales, because EVGP prevents important gradient components from being back-propagated adequately over a large number of steps. We introduce a simple stochastic algorithm (h-detach) that is specific to LSTM optimization and targeted towards addressing this problem. Specifically, we show that when the LSTM weights are large, the gradient components through the linear path (cell state) in the LSTM computational graph get suppressed. Based on the hypothesis that these components carry information about long term dependencies (which we show empirically), their suppression can prevent LSTMs from capturing them. Our algorithm prevents gradients flowing through this path from getting suppressed, thus allowing the LSTM to capture such dependencies better. We show significant convergence and generalization improvements using our algorithm on various benchmark datasets.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset