Hedonic Expertise Games

11/03/2020
by   Bugra Caskurlu, et al.
0

We consider a team formation setting where agents have varying levels of expertise in a global set of required skills, and teams are ranked with respect to how well the expertise of teammates complement each other. We model this setting as a hedonic game, and we show that this class of games possesses many desirable properties, some of which are as follows: A partition that is Nash stable, core stable and Pareto optimal is always guaranteed to exist. A contractually individually stable partition (and a Nash stable partition in a restricted setting) can be found in polynomial-time. A core stable partition can be approximated within a factor of 1 - 1/e, and this bound is tight unless P = NP. We also introduce a larger and relatively general class of games, which we refer to as monotone submodular hedonic games with common ranking property. We show that the above multi-concept existence guarantee also holds for this larger class of games.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro