Hierarchical Collaborative Hyper-parameter Tuning
Hyper-parameter Tuning is among the most critical stages in building machine learning solutions. This paper demonstrates how multi-agent systems can be utilized to develop a distributed technique for determining near-optimal values for any arbitrary set of hyper-parameters in a machine learning model. The proposed method employs a distributedly formed hierarchical agent-based architecture for the cooperative searching procedure of tuning hyper-parameter values. The presented generic model is used to develop a guided randomized agent-based tuning technique, and its behavior is investigated in both machine learning and global function optimization applications. According the empirical results, the proposed model outperformed both of its underlying randomized tuning strategies in terms of classification error and function evaluations, notably in higher number of dimensions.
READ FULL TEXT