Hierarchical Disentangled Representations

04/06/2018
by   Babak Esmaeili, et al.
0

Deep latent-variable models learn representations of high-dimensional data in an unsupervised manner. A number of recent efforts have focused on learning representations that disentangle statistically independent axes of variation, often by introducing suitable modifications of the objective function. We synthesize this growing body of literature by formulating a generalization of the evidence lower bound that explicitly represents the trade-offs between sparsity of the latent code, bijectivity of representations, and coverage of the support of the empirical data distribution. Our objective is also suitable to learning hierarchical representations that disentangle blocks of variables whilst allowing for some degree of correlations within blocks. Experiments on a range of datasets demonstrate that learned representations contain interpretable features, are able to learn discrete attributes, and generalize to unseen combinations of factors.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset